Quadrature formulae and Hermite-Birkhoff interpolation
نویسندگان
چکیده
منابع مشابه
Composite Hermite - Birkhoff Quadrature Formulas of Gaussian Type
We show how to combine incidence matrices, which admit Hermite-Birkhoff quadrature formulas of Gaussian type for any positive measure, in such a way that the resulting matrix also admits Gaussian type quadratures for any positive measure. Moreover, the uniqueness property and the extremal property of the formulas corresponding to the submatrices are transferred to the formula admitted by the co...
متن کاملThe Budan-fourier Theorem and Hermite-birkhoff Spline Interpolation
We extend the classical Budan-Fourier theorem to Hermite-Birkhoff splines, that is splines whose knots are determined by a finite incidence matrix. This is then applied to problems of interpolation by Hermite-Birkhoff splines, where the nodes of interpolation are also determined by a finite incidence matrix. For specified knots and nodes in a finite interval, conditions are examined under which...
متن کاملHermite Birkhoff interpolation of scattered data by combined Shepard operators
Methods approaching the problem of the Hermite Birkhoff interpolation of scattered data by combining Shepard operators with local interpolating polynomials are not new in literature [1–4]. In [3] combinations of Shepard operators with bivariate Hermite-Birkhoff local interpolating polynomials are introduced to increase the algebraic degree of precision (polynomial reproduction degree) of Shepar...
متن کاملA new non-polynomial solution to multivariate Hermite-Birkhoff interpolation
A new solution to the multivariate Hermite-Birkhoff interpolation problem is presented. The classical approach to this problem consists in constructing the minimum degree polynomial, which coincides with the prescribed function and derivative values at the sample points. Here the interpolant is represented as a truncated Multipoint Taylor (MT) series. A MT series can be regarded as an extension...
متن کاملRunge-Kutta Defect Control Using Hermite-Birkhoff Interpolation
Two techniques for reliably controlling the defect (residual) in the numerical solution of nonstiff initial value problems were given in [D. This work describes an alternative approach based on Hermite-Birkhoff interpolation. The new approach has two main advantagesmit is applicable to Runge-Kutta schemes of any order, and it gives rise to a defect of the optimum asymptotic order of accuracy. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1973
ISSN: 0001-8708
DOI: 10.1016/0001-8708(73)90004-2